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Abstract. Deep learning-based polyp segmentation approaches have
achieved great success in image datasets. However, the frame-by-frame
annotation of polyp videos requires a large amount of workload, which
limits the application of polyp segmentation algorithms in clinical videos.
In this paper, we address the semi-supervised video polyp segmentation
task, which requires only sparsely annotated frames to train a video
polyp segmentation network. We propose a novel spatial-temporal atten-
tion network which is composed of Temporal Local Context Attention
(TLCA) module and Proximity Frame Time-Space Attention (PFTSA)
module. Specifically, TLCA module is to refine the prediction of the
current frame using the prediction results of the nearby frames in the
video clip. PFTSA module utilizes a simple yet powerful hybrid trans-
former architecture to capture long-range dependencies in time and
space efficiently. Combined with consistency constraints, the network
fuses representations of proximity frames at different scales to gener-
ate pseudo-masks for unlabeled images. We further propose a pseudo-
mask-based training method. Additionally, we re-masked a subset of
LDPolypVideo and applied it as a semi-supervised polyp segmenta-
tion dataset for our experiments. Experimental results show that our
proposed semi-supervised approach can outperform existing image-level
semi-supervised and fully supervised methods with sparse annotation at
a speed of 135 fps. The code is available at github.com/ShinkaiZ/SSTAN.

Keywords: Polyp segmentation · Semi-supervised learning · Medical
image segmentation

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-16440-8 44.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Wang et al. (Eds.): MICCAI 2022, LNCS 13434, pp. 456–466, 2022.
https://doi.org/10.1007/978-3-031-16440-8_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16440-8_44&domain=pdf
https://github.com/ShinkaiZ/SSTAN
https://doi.org/10.1007/978-3-031-16440-8_44
https://doi.org/10.1007/978-3-031-16440-8_44


Semi-supervised Spatial Temporal Attention Network 457

1 Introduction

Colorectal Cancer (CRC) has become a worldwide human health threat espe-
cially for people over fifty years old. In 2021, 147,000 people in United State were
diagnosed with this disease, while 53,200 among them died from it [18]. Most
CRCs develop from intestinal polyps (adenomas and serrated type), which means
the detection and treatment of polyps with colonoscopy is exceedingly significant
for the prevention and screening [6]. Clinically, the diagnosis of polyps was com-
pleted by an experienced endoscopist, which suffers from a high labor cost and
may lead to the omission of diagnosis. With the development of artificial intelli-
gence, many automatic polyp segmentation methods were proposed for ancillary
diagnosis and made remarkable progress. Inspired by the great progress achieved
by fully convolutional network (FCN) [1], UNet [20], ResUnet [2], UNet++ [31]
and ResUNet++ [10] were firstly applied to the polyp segmentation task. Later
with the development of attention and transformer [23], ACSNet [29], PraNet
[9] and SANet [26] were presented. Inspired by vision transformer [8], which is a
novel structure adopting the transformer to computer vision task, Polyp-PVT [7]
was soon suggested. All these deep learning based medical segmentation meth-
ods mainly focus on the polyp segmentation at the image level, which means
they ignore the temporal consistency in endoscopic videos. To better integrate
temporal information, video polyp segmentation methods such as Hybrid CNN
[19] and PNS-Net [12] were presented recently.

However, the outstanding performances achieved by above supervised mod-
els all depend on a large amount of image annotations. In reality, annotation of
polyp images and videos would be labor-intensive and resource-intensive. Differ-
ent from nature images, the labels of medical images require experts in related
fields to be annotated and refined. Moreover, for each endoscopic video, many
video frames describing a similar content are included, which causes repetitive
work and the consistency of manual labels is hard to be guaranteed. Therefore,
many semi-supervised polyp segmentation models are suggested, which reduce
their requirements for the amount of labeled data and try to fully utilize the
unlabelled data. For example, interpolation consistency training method [25]
and its improvements [14,17,27,28,30] employ and predict the unlabelled data
with the assumption that there is consistency between adjacent labeled data and
unlabelled data. Nevertheless, all semi-supervised methods simply consider the
consistency and complete the segmentation at the image-level, which ignores the
consistency between consecutive frames in video clips.

Considering the labeling difficulty and the utilization of the consistency
between consecutive video frames, in this paper, we address the semi-supervised
video polyp segmentation task with sparsely annotated frames as well as unla-
belled frames and proposed Semi-Supervised Spatial Temporal Attention Net-
work (SSTAN). In our work, we consider both the temporal consistency between
video frames and the spatial information contained in each frame with semi-
supervised transformer block and vision transformer block, respectively. For eval-
uation, we applied our model and other cutting-edge models on the subset of
LDPolypVideo dataset [15] with masks re-annotated by us. In our experiments,
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Fig. 1. The overview of our approach for semi-supervised video polyps segmentation,
which consist of four Temporal Local Context Attention (TLCA) module in the skip
connections with a Proximity Frame Temporal-Spatial Attention (PFTSA) module in
the bottom layer.

SSTAN requires only 10% of sparse annotations even to outperform existing
fully supervised methods on public benchmarks.

Generally, our contributions are four-folds: (1) We creatively address a semi-
supervised video polyp segmentation task, which requires the model to be trained
under the supervision of a few sparsely annotated video frames and a large num-
ber of unlabeled video frames. (2) To both exploit the temporal and spatial
features, we propose a novel Semi-Supervised Spatial Temporal Attention Net-
work (SSTAN) with Temporal Local Context Attention (TLCA) and Proximity
Frame Time-Space Attention (PFTSA). Additionally, we suggest a correspond-
ing guided training flow consisted with two stages, which allows the model to
generate pseudo labels for unlabeled frames under the supervision of labeled
data firstly and be finetuned with both true label and pseudo labels. (3) We
relabelled and provided corresponding masks to partial video frames from the
LDPolypVideo dataset, which was originally labeled with bounding boxes. With
dense video frames, the partial re-annotated dataset could be served as one of the
few semi-supervised video polyp segmentation datasets. (4) We evaluated and
compared our model with both image and video polyp segmentation models and
our SSTAN significantly outperformed existing state-of-the-art fully supervised
methods with limited labels (e.g., 10% ground truth labels) (Fig. 1).

2 Method

This paper is targeted at tackling the semi-supervised video polyps segmenta-
tion task. Suppose we have a colonoscopy video clip which is constituted by n
frames X = {xi}ni=1 for training, including M frames with pixel-wise annota-
tions, donated as L, and other N − M frames without annotations, donated as
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U . The goal of this task is to train the video segmentation model using L and
U , thus reducing the dependency on annotations in the training process. The
framework of our approach is shown in Fig. 3, which is based on ResUnet [10] as
the framework like ACSNet [29]. In order to fuse the proximity frame informa-
tion at different layers, the TLCA module is placed in each skip link. Moreover,
we utilize the PFTSA module to capture contextual information in both time
and space at the bottom layer. Finally, we use consistency loss to constrain the
unlabeled frames in the sparsely annotated video frames.

Feature Skip Connec�on

A�en�on 
Maps

x

+Encoder 

TLCA Module

Decoder 

Decoder 

Fig. 2. Temporal local context attention module

2.1 Temporal Local Context Attention

The goal of Temporal Local Context Attention(TLCA) module is to exploit
the prediction differences of adjacent frames to focus the network attention on
regions that are harder to predict accurately, thus refining the decoding results.
As shown in Fig. 2, for the outputs of encoder layer d, donated as {Ed(xt)}nt=1,
we leverage the predictions {Pd+1(xt)}nt=1 of the decoder layer d+1 to calculate
the attention map for each frame. Specifically, the attention map of frame xi is
donated as follow:

Md
i =

1
n − 1

∑

t�=i

(|Pd+1(xt) − Pd+1(xi)|) (1)

where d represents the depth, t stands for the frames except the current frame i.
We calculate the absolute difference between the prediction of the current frame
and the prediction of nearby frames. For each pixel in the image, when the pre-
diction of different frames is similar, the attention map is close to 0. Conversely,
when the prediction differs significantly between frames, the attention map is
close to 1, representing that this position needs to be better refined in the next
decoder layer. Finally, the attention enhanced feature is used as input to the
previous layer, to optimize the output of the higher resolution mask.
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Fig. 3. Proximity Frame Temporal-Spatial Attention Module. The b, n, c, h, w stands
for batch size, frames number, channel number, height and width, respectively.

2.2 Proximity Frame Temporal-Spatial Attention

Although the TLCA module could fuse local information at the same position
across frames, the network still lacks the ability to capture long-term contexts.
Motivated by the rapid application of the transformer, we applied multi-head
attention in two different dimensions, temporal and spatial, respectively. Specifi-
cally, for the last layer output of the encoder, we regard each pixel in the feature
map as the embedding of a patch in the original image. In contrast to the vanilla
transformer, which consists of a multi-head attention module and an MLP, we
borrow the idea from [5] to use two multi-head attention modules to capture spa-
tial and temporal contextual dependencies. For feature E5(x) ∈ R

b∗n∗c∗h∗w, we
firstly reshape it to R

B1∗n∗c, where B1 = b ∗h ∗w, then calculate the multi-head
attention across n frames. Consequently, the feature is re-arranged to R

B2∗m∗c,
where B2 = b ∗ n,m = h ∗ w. And another multi-head attention is calculated
within each image. Finally, after the MLP module, the output is used as the
input of decoder.

2.3 Loss Function

Our loss function is divided into supervised and unsupervised parts. The super-
vised loss function is formulated as follow:

Lsup =
1

2 ∗ |L| ∗ |D|
∑

xn∈L

∑

d∈D

(Dice (Pd(xn), yd) + CE (Pd(xn), yd)), (2)

where yd is the ground truth of the labeled image which is down-scaled to
the feature size of the corresponding layer d. Dice(·) is dice loss and CE(·)
is binary cross entropy loss. Lsup is used to calculate between prediction Pd(xn)
and ground truth yd of frames which have been labeled.

The unsupervised loss function can be formulated as follow:

Lunsup =
1

|X| ∗ |D|
∑

xn∈X

∑

d∈D

SmoothL1 (Pd(xn),Pd(xn+1)) (3)

To compute consistency, Lunsup is calculated between the current frame xn

and the next frame xn+1 except the last frame in a video clip.
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2.4 Training Flow

The whole network is trained following the end-to-end scheme in two stages:
i) Pretraining phase We used the training data for semi-supervised training of
our model with Lpretrain = 1

2 (Lsup + Lunsup). ii) Finetuning phase The model
pretrained in the first stage was applied to generate pseudo labels for the unla-
beled frames in the training set. With training data as well as both true labels
and pseudo labels of all frames, the model was supervised finetuned with loss
function Lsup subsequently.

3 Experiments

3.1 Datasets and Implementation

Datasets. Commonly used polyp segmentation datasets including five bench-
marks (Kvasir [11], CVC-ClinicDB [3], EndoScene [24], ETIS-Larib Polyp DB
[21] and CVC-ColonDB [4]) are image-based, which contain selected frames
from video clips. For video polyp segmentation task, due to the expensive
cost of video annotation, the only currently knowable video polyp segmenta-
tion dataset, i.e., ASU-Mayo, contains video with dense frames and is annotated
with masks [22]. However, ASU-Mayo is not publicly accessible, which means
other datasets are desired for training models. Meanwhile, LDPolypVideo [15]
and SUN Colonoscopy Video Database [16] are two recent video polyp dectec-
tion datasets fully annotated with bounding boxes. LDPolypVideo contains 160
video clips with 15397 dense video frames describing polyps in more variety
under different bowel environments. To adapt LDPolypVideo to our task, we
re-masked 60 videos out of 160 videos in LDPolypVideo for training and testing.
The details of our re-masked dataset are described in supplementary material.

Training and Testing. In our experiment, the partial masked 36 videos and
the following fully annotated 12 videos in re-masked LDPolypVideo were applied
as training data and validation data, respectively. The initial learning rate, batch
size and optimizer applied in our model training is 1e−4, 4, and AdamW [13],
respectively. Every 11 frames with the first frame and the last frames masked in
each video were resized to 256×256 as a single input. The model was pretrained
for 100 epochs and finetuned for 50 epochs. Same parameters and the last 12
fully annotated videos were used for evaluation. When testing, our approach
achieves a speed of about 135fps on a single Nvidia Tesla V100 GPU.

State-of-the-Art Models. We compared our model with other state-of-the-
art models mainly in three types: (1) Image-based Supervised Model (ACSNet
[29], SANet [26], PVT [7]); (2) Video-based Supervised Model (PNS [12]) and (3)
Image-based Semi-Supervised Model (URPC [14], CLCC [30]). We trained the
Image-based Semi-Supervised Model in an end-to-end way under their default
settings. Models in other types were retrained in two stages similarly to training
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Fig. 4. Qualitative results of different models on LDPolypVideo testing set.

Table 1. The results and comparison with other state-of-the-art methods. The highest
score is highlighted in black bold.

Model Labeled Unlabeled Accuracy MAE F1-Score F2-Score mIoU

ACSNet 10% 0.984 0.016 0.396 0.411 0.658

10% 90% 0.983 0.017 0.332 0.338 0.631

SANet 10% 0.986 0.014 0.405 0.399 0.665

10% 90% 0.982 0.018 0.396 0.391 0.665

PVT 10% 0.966 0.034 0.149 0.177 0.538

10% 90% 0.953 0.047 0.165 0.214 0.531

PNSNet 10% 90% 0.989 0.011 0.314 0.296 0.628

URPC 10% 90% 0.984 0.016 0.370 0.389 0.648

CLCC 10% 90% 0.987 0.013 0.366 0.367 0.657

Ours 10% 90% 0.990 0.010 0.482 0.486 0.700

setting: i) Pretraining phase We used the annotated 10% data for supervised
training of the model under their default settings. ii) Finetuning phase We used
the model obtained in the previous step to predict the remaining 90% of our
datasets and got the corresponding masks. These masks were used as pseudo-
labels for 90% of the data, and then we trained the model using both data with
pseudo-labels and data with ground truth. For fair comparison, we trained the
first stage over 100 epochs and the second stage over 50 epochs and the result
of all models in two stages have been tested except PNS, which is a video-based
model while the first stage of its default training process utilizing images.

3.2 Qualitative Evaluation

In Fig. 4, we provide the visualization results of our model and other compared
models on the testing set of re-annotated LDPolypVideo. We selected three
adjacent frames for visualization. Our model has two main advantages: (1) our
model has the ability to locate and segment the polyps in many conditions,
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Table 2. The results of ablation study. The highest score is highlighted in black bold.

Model Accuracy MAE F1-Score F2-Score mIoU

Baseline 0.979 0.021 0.306 0.300 0.619

Baseline+PFTSA 0.975 0.015 0.410 0.432 0.665

Baseline+PFTSA+TLCA 0.988 0.012 0.432 0.431 0.686

Baseline+PFTSA+TLCA+Finetuning 0.990 0.010 0.482 0.486 0.700

such as motion blur, different lighting, complex environment with reflections and
bubbles, etc.. (2) Our model can consistently predict polyps among consecutive
frames because the information of adjacent frames is taken into account. More
visualization results is shown in supplementary material.

3.3 Quantitative Evaluation

For quantitative evaluation, we selected six metrics: Accuracy, MAE, F1-Score
(Dice), F2-Score and mean IoU (mIoU). The results of our model and other
state-of-the-art models are shown in Table 1. Our model outperformed all three
types of models under the same data setting over all metrics. Specially, our model
improves the Dice, F2-Score and mIoU achieved by other models by 8.6%, 7.5%
and 4.2%, respectively. This result indicates that our model utilizes the 90%
unlabeled data better than other image-based models as well as the video-based
supervised model by considering the consistency between consecutive frames.
Additionally, two notable results are worth mentioning. One is that the perfor-
mance of PVT is remarkably worse than other convolution-based models, which
demonstrates the perspective shown in [8] that the performance of vision trans-
former highly depends on the size of training data. The other is that F1-score,
F2-score and mIoU are unsatisfactory as the original LDPolypVideo is a chal-
lenging dataset that contains various polyps under complex colonial environment
[15]. For more experimental results, see supplementary materials.

3.4 Ablation Study

In order to verify the effectiveness of our proposed modules, we conducted abla-
tion experiments on the same testing dataset. The baseline model is the ResUNet
framework, and we evaluated module effectiveness by adding components. Specif-
ically, we gradually added PFTSA at the bottom layer, TLCA modules at the
skip links, and finetuning at the training phase.

Effectiveness of PFTSA. We trained the baseline both with PFTSA and
without PFTSA. The results are shown in the first and second line of Table 2.
We found that results with PFTSA performed better. The improvements suggest
that PFTSA improves performance by using spatial and temporal information.

Effectiveness of TLCA. Similarly, we investigated the contribution of TLCA
by introducing the module additionally. The results are shown in the third line of
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Table 2. Compared to the model with PFTSA, F1-score and mIoU of the model
were increased by 2.2% and 2.1% respectively, which indicates the attention
mechanism can enable the model to focus on the hard regions.

Effectiveness of Finetuning. Notably, the above experiments were only
trained in pretraining phase. To analyze the effectiveness of our training pro-
cess, we additionally performed finetuning on the model with both PFTSA and
TLCA. The improvement suggests that introducing pseudo labels and perform-
ing supervised training are necessary for increasing performance.

4 Conclusion

In this paper, we defined the semi-supervised polyp video segmentation task
and proposed an accurate and novel network SSTAN, which exploits the spatial
and temporal information from the proximity frames in endoscope videos with
PFTSA and explores the hard regions with TLCA. Additionally, we produced
and applied a re-masked sub-dataset of LDPolypVideo, which could be served
as the first challenging dataset for semi-supervised polyp video segmentation
task. Experiment results demonstrate that our SSTAN outperformed other state-
of-the-art methods including image-based supervised model, image-based semi-
supervised model and video-based supervised model under the same data setting
with real time speed (135 fps). In future work, we will further explore a better
performance of SSTAN on semi-supervised tasks for video polyp segmentation.
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